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Statistics of the Lyapunov exponent in one-dimensional layered systems
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Localization of acoustic waves in a one-dimensional water duct containing many randomly distributed air
filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties
are also explored extensively. The results reveal that in this system a single-parameter scaling is generally
inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This
contradicts the earlier observations in an optical case. We compare the results with two optical cases and give
a possible explanation of the origin of the different behaviors.
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I. INTRODUCTION waves and define the three models employed in this paper. In
Sec. Il we first review the previous results and then discuss
The fact that the electronic localization in disordered systhe numerical results of the three chosen models. A possible
tems[1] is of a wave nature has led to the suggestion thagxplanation of the origin of the properties of the AC local-
classical waves could be similarly localized in random sysdzation are also proposed. Concluding remarks are given in
tems. The effort in searching for localization of classicalSec. IV.
waves, such as acoustic and electromagnetic waves is tre-
mendous. It has drawn intensive attention from both theorists Il. THEORY AND MODELS
[2—8] and experimentalis{®,10]. Since the pioneering work
of Andersonet al.[11], concepts of universality and scaling
have become importafi2-16. These ideas stem from the
insensitivity of the macroscopic laws to microscopic details; |,
that is, the systems or models that differ from each other on . (a1) T
a microscopic level can show identical macroscopic behav-
ior. According to the hypothesis of single-parameter scaling/s\'m
(SPS [11,15,14, if the localization behaviors of a one- & .
dimensional (1D) disordered system obey SPS, the "‘04 -
Lyapunov exponent or inverse localization length that char- B
acterizes the degree of localization will be proportional to its |
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To begin with, we explain the one-to-one correspondence
of the 1D propagation between the AC and EM waves. For
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In a recent study of acoust{&C) waves propagation in a Kd/n
one-dimensional randomly layered systdii7] we have 0'7_&!;\
found that the statistics relation between the Lyapunov expo- °¢ -4 ”‘\, g
nent(LE) y and its variance var{) do not follow the pre- g°-5—_—_;_'_:_',,,_,_——— g
dictions of the SPS. However, in an earlier study on 1D >x%¢ T, =
localization behaviors of electromagnetiEM) waves[15], 3:’“-3——-—"\ g
the authors claimed that the nonuniversal behaviors of the 02Ty é
LE will disappear and SPS will be restored while the ran- o™~ -
domness of the system exceeds a critical value. Since for 1L &~ o5 o5
propagation the AC and EM waves are in fact mathemati- Kd/r
cally equivalent, i.e., there exists one-to-one correspondenc
between these two kinds of waves, it looks quite impossible (c1) - ~ Z..
that they can have different localization behaviors. In order *°[ ___--~ o
to understand where the main differences between these twg 2——===-—__ | %
kinds of models come from, in this paper we study the EM @1s e -1
and AC systems simultaneously. Two EM models and one™ [--= - —— Z
AC model are studied in this paper. We find that though the | ____---’ ()
statements made by Deydt al. [15] are correct in their . =
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chosen case, however, the applicability of SPS is more ol Kain k(b

less based on the fact that the impedance contrast between
the constituents of the wave media is close to 1. Without this FIG. 1. Band Structuregond |ine3 and transmission curves for
restriction then, even in the EM systems, the SPS will not bene three models discussed in this pagat) and (a2 are for the
restored in the high randomness limit. first model; (b1), (b2) are for the second modelgl) and (c2) are

This paper is organized as follows. In the following sec-for the third model. The broken lines ifal)—(c1) represent the
tion we explain the correspondence between the EM and AGverse penetration depth .
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. . . . i . FIG. 3. var(y) vs y for the first and the second models.
simplicity, while without destroying the generality, we re-

strict our discussion to the monochromatic waves with time

. 2 2
dependence™'“!. We also assume that waves are normally dft dE) __weE_ B (3)
incident on the left boundary of the media and propagate dx\p dx c2 uc?
along thex axis. The 1D propagation of AC waves under
these assumptions is govened by or
d (1dp ©2p d(1dH|  o’uH  °H @
x| p dx, :*E, (1) dx| e dx, c ec?’

whereE=E, andH =H, are the electric and magnetic fields,
where p=p(x), p=p(x), andc=c(x) represent the mass ¢ and stand for the permittivity and permeability, is the
density, the pressure, and the phase velocity of the wave 'Qpeed of light in vacuum, and= CO/@ is the speed of
the media, respectively. In the special case of layered mediﬁaght in the media Compe{ring Eqé3) and (4) with Eq. (1)

considered ifi17], p andc are all constants in a single layer. 5 can easily recognize the equivalence between the AC
Across an interface that separates two layers either ¢ ;14 EM models via the substitutions

jump to a different value but pressupeand media vibration

velocity E—p, H—-u, e—1pc?® pu—p (5)
1 dp in Eq. (3) or
U:.idi (2)
iwp dx H—p, E—u, e—p, up—1lpc? (6)

must be continuously connected. The continuity conditionsn Eq. (4).

for every interface together with the wave equatitpitself In spite of these similarities, the two models discussed in

determine the dynamics of the whole system. [17] and[15] indeed have some different features. First, in
Similarly, the equation governing 1D propagation of the optical case described in E@), one usually assumes

monochromatic EM waves can be deduced from the Maxu=1. However, in our AC model the corresponding quantity

well equation and is written as is p. The mass density ratio between water and air is about
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775, a very large value. Second, the phase velocity ratio ity pc and the impedance of EM waves is givendmyor uc.

our model is 4.455, whereas ii5] the ratio is 1.0945. Thus we see that in model 3 the impedance contrast is about
Third, the thickness ratio in our model is 9999/1, much larger3365 and impedance contrasts in models 1 and 2 are about
than 1/1 that was considered [ih5]. Fourth, we randomize 1.414 and 4.472, respectively.

the thickness of the water layetsmedium with high phase
velocity) and keep the thickness of air laydmedium with
low phase velocityconstant. In Refl15] they randomize the
thickness of the layers with low phase velocity. Before discussing the numerical results we first summa-

To clarify where the major differences come from, werize the relevant results of our previous study’]. There
define three models and study them numerically. The systemoth the LE and its variance as functions of frequency were
for each model is a composite made of two kinds of materistudied. At low disorders, the variance of the LE inside the
alsA andB with corresponding thicknesg andb; in thejth  gaps is small. In contrast with the optical c4$8], there are
A/B layer. For simplicity hereafter we assumg=a, i.e., all  no double maxima inside the gap. With increasing disorder,
A type layers have the same size. Any quanti@® A and  double peaks appear inside the allow bands. When exceeding
B type layers are denoted &%, andQy, respectively. a certain critical value, however, the double peaks emerge.

(1) Model 1 is an optical model withe,/e,=2 and  The higher the frequency is, the lower is the critical value.
upl/ma=1. The thickness ratio ib)/a=1, where b  The increasing disorder reduces the band gap effect and
e(b)[1-A,1+A] andA €[0,1]. smears the LE. We also plotted LE-variance relations. How-

(2) Model 2 is also an optical model witk,/e,=20 and  ever, with increasing disorder, we did not observe linear de-
mplpna=1. The thickness ratio isb)/a=1, where b pendence between the LE and its variance, as expected from
e(b)[1-A,1+A] andA €[0,1]. the single-parameter scaling theory.

(3) Model 3 is our previously considered acoustic model Now we turn to the discussion of the three chosen models.
with ¢, /c,=4.455 andp,/p,= 755.2. The thickness ratio is When randomnesA =0, the layered systems become peri-
given by (b)/a=9999, wherebe(b)[1-A,1+A] and A  odic. Eigenfunctions of wave equation in a periodic environ-
e[0,1]. ment are Bloch waves. As is well known, a band structure

In a single layer the impedance of the AC waves is giverappears in this situation. The understanding of the band

IIl. NUMERICAL RESULTS
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LYAPUNOV EXPONENT

structure is very important and helpful in the following dis- infinite and the periodicity is ended by a boundary, say, the
cussions. The dispersion relation of the Bloch waves in théeft boundary, then the waves are localized in the vicinity of
underlying periodic system is given by

cosKd=cosk,a cosk,b— cosh 25 sink,a sink,b  (7)

the boundary. The penetration depth is equal ttni(K)]|.
Figures 1al-c) plot the band structures of models 1-3.
Solid curves represent Re@) and cover the pass bands.
Broken lines cover the band gaps and represent the inverse

with d=a+ b representing the thickness of the space periocbenetration depths Ink(d). Model 1 has very wide pass

and K the Bloch wave number. Here for models 1 and 2pands and very narrow band gaps. Band gaps are wider than
function cosh 2 is defined as

1
cosh 2p= 5

NER \f)
€a €p

and for model 3 it is given by

1
cosh 2p= >

gh+

gh

g=palpy,

8

h=c,/c,. (9)

pass bands in model 2. Model 3 has very wide band gaps and
very narrow pass bands. An important feature of model 3 is
that in the band gaps the penetration depth is very small.
Even in the first gap(which has the longest penetration
depth the penetration depth is smaller than one period.

To see how randomness influences the transmission prop-
erties we select the frequency range that is around the second
gap and plot the transmission curves on Figg2tc2. In
this calculation 1600 layer@800 period$ are used in model
1 and 200 layer$100 periodgare used in models 2 and 3. In

In the frequency ranges wheted are real, the waves are the gaps, the transmission rate is almost zero. When random-
freely propagating in the media and by definition the fre-ness is increased we observe that the transmission rate in
guency ranges correspond to the pass bands. Beyond the p@sss bands have been reduced greatly in model 2 and model
bandsKd are not purely real numbers, solutions of wave3. On the other hand, the band gaps in models 2 and 3 seem
equation that satisfy appropriate boundary conditions in botlio be more robust than in model 1.

the left and right infinity do not exist, and thus the frequency To further explore the influence of randomness we study
ranges are referred to as the band gaps. If the media is sentieth the LE and its variance. The results are shown in Figs.
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FIG. 6. Transmission vs dimensionless fre-
quency for the third modela) Transmission for
the N=2 system(two air blocks. (b) Transmis-
sion for theN=100 system(100 air blocks. (c)
Comparison betweerT>", (broken ling and
Tn=100 (solid line).

2(al-a5 are results of model 1 and Figs(bd—b3 are re-  Ref. [15], the double peaks of vayj first appear near the
sults of model 2. The LE is denoted gsand its variance is  gap edges. The peaks of vgj(imply the fluctuations of
denoted as varf). Herey and varfy) are defined as transmission. Further increasing the var(y) peaks become

y=lim (yn) (10

N— oo

fatter and flatter. We observe that if in the vicinity of a peak
there is another peak, then increasing the randomness will

cause them to merge. For model 1,/3s increased, a pair
with of var(y) peaks merge with each other inside the gap, fol-
lowing the scenario of Ref15]. However, for model 2 when

won T

1 n 1 (11) the randomness is increased the pairs of ¥ageaks tend to
merge with each other in pass bands and finally destroy the

pass bands. It seems that in model 2 the merging of the
and double peaks of vaxf) in a pass band will never be com-
. 2\ 5 pleted. The merging tendency of a pair of double peaks
var(y)= lim ((yi) = (), 12) merely increases the LE and destroys the pass band they

N— o0

belong to.
We also plot the LE versus its variance in Fig. 3. There we

whereTy is the transmission rate for a system witN 2ay-

ers (N periods in the Corresponding periodic Syslemnd observe that although for model(WIth small dielectric con-
notation(- - -) represents the ensemble average. The sampféast between two layers like that studied[ib]) the SPS
size is chosen in such a way that it is much larger than theéeems still a good approximation in large disorder limit, de-
localization length and the ensemble average is carried owiation from SPS is clearly observed in model 2. Similar
over 200 random configurations. As expected, when the rarguantities have also been calculated for model 3 and plotted
domness is small the LE can be approximated by the inversi@ Figs. 4 and 5. There we also observe novel behaviors of
penetration depth for the wave propagating in the underlyingnd var(y) and find even larger deviation from SPS as re-

semi-infinite periodic system. As in the case discussed imported in[17].

066609-5



PI-GANG LUAN AND ZHEN YE PHYSICAL REVIEW E 64 066609

From these observations, we find: rate for two air blocks illustrated in Fig.(&. We indeed

(1) How does the varg) variation with the randomness observed this result in Fig.(¢. When randomness is not
depend on many parameters. For example, the impedaneery large, this local effect explains why the phase averaging
contrast, the thickness ratio, and which kind of layéfs  process in model 3 is so inefficient that the randomness can-
example, high phase velocity, low phase velocity, )ets. not modify the LE much in the band gaps.
randomized.

(2) When impedance contrast is large, it seems that the
deviation from the SPS is a usual feature. The results re- IV. CONCLUDING REMARKS
ported in[15] are based more or less on the fact that the

impedance contrast between two layers is close to 1. In this paper we studied the statistics of localization prop-

In order to understand why the large deviation from theerties in one-dimensional layered systems. The Lyapunov ex-

. . . ; o onent and its variance are compared for three chosen mod-
SPS in model 3 is established we study its transmission prop- ' .
S ) . . els. We find that the band structures of the corresponding
erties in more detail. In Fig. (6 we plot the transmission

rate of the AC waves through a pair of air blocks of thicknes eriodic systems influence the localization properties more if

a. The two air blocks are separated by a water layer of thick-he impedance contrast b'etween nelghbormg. Iayers IS not
h T S : close to 1. In general the single-parameter scaling is not very
nessb=999%. Similarly in Fig. §b) we plot the transmis- d del-d d hould b
sion for the system with 100 air blocks. Comparing these twoaCCurate and more model-dependent parameters should be
. ) X j Included in the detailed descriptions of localization behav-
diagrams we find that the air blocks are very strong scattereri% s
and thus as few as only two air blocks are enough to deter-
mine the ranges of band gaps and pass bands. If the local-
ization effect of AC waves in model 3 is mainly determined
by the multiple scattering of AC waves between pairs of air
blocks, then one would expect that for a system with 100 air This work received support from the National Science
blocks the transmissiofy—1qg in the band gaps can be ap- Council (Grant Nos. NSC89-2611-M008-002 and NSC89-

proximated byTE,OZZ. HereTy-, refers to the transmission 2112-M008-008
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