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Statistics of the Lyapunov exponent in one-dimensional layered systems

Pi-Gang Luan and Zhen Ye
Wave Phenomena Laboratory, Department of Physics, National Central University, Chung-li 32054, Taiwan

~Received 20 June 2001; published 20 November 2001!

Localization of acoustic waves in a one-dimensional water duct containing many randomly distributed air
filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties
are also explored extensively. The results reveal that in this system a single-parameter scaling is generally
inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This
contradicts the earlier observations in an optical case. We compare the results with two optical cases and give
a possible explanation of the origin of the different behaviors.
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I. INTRODUCTION

The fact that the electronic localization in disordered s
tems @1# is of a wave nature has led to the suggestion t
classical waves could be similarly localized in random s
tems. The effort in searching for localization of classic
waves, such as acoustic and electromagnetic waves is
mendous. It has drawn intensive attention from both theor
@2–8# and experimentalists@9,10#. Since the pioneering work
of Andersonet al. @11#, concepts of universality and scalin
have become important@12–16#. These ideas stem from th
insensitivity of the macroscopic laws to microscopic deta
that is, the systems or models that differ from each other
a microscopic level can show identical macroscopic beh
ior. According to the hypothesis of single-parameter scal
~SPS! @11,15,16#, if the localization behaviors of a one
dimensional ~1D! disordered system obey SPS, t
Lyapunov exponent or inverse localization length that ch
acterizes the degree of localization will be proportional to
variance.

In a recent study of acoustic~AC! waves propagation in a
one-dimensional randomly layered system@17# we have
found that the statistics relation between the Lyapunov ex
nent ~LE! g and its variance var(g) do not follow the pre-
dictions of the SPS. However, in an earlier study on
localization behaviors of electromagnetic~EM! waves@15#,
the authors claimed that the nonuniversal behaviors of
LE will disappear and SPS will be restored while the ra
domness of the system exceeds a critical value. Since fo
propagation the AC and EM waves are in fact mathem
cally equivalent, i.e., there exists one-to-one corresponde
between these two kinds of waves, it looks quite imposs
that they can have different localization behaviors. In or
to understand where the main differences between these
kinds of models come from, in this paper we study the E
and AC systems simultaneously. Two EM models and o
AC model are studied in this paper. We find that though
statements made by Deychet al. @15# are correct in their
chosen case, however, the applicability of SPS is more
less based on the fact that the impedance contrast betw
the constituents of the wave media is close to 1. Without
restriction then, even in the EM systems, the SPS will not
restored in the high randomness limit.

This paper is organized as follows. In the following se
tion we explain the correspondence between the EM and
1063-651X/2001/64~6!/066609~6!/$20.00 64 0666
-
t
-
l
re-
ts

;
n

v-
g

r-
s

o-

e
-
D
i-
ce
le
r

wo

e
e

or
en

is
e

-
C

waves and define the three models employed in this pape
Sec. III we first review the previous results and then disc
the numerical results of the three chosen models. A poss
explanation of the origin of the properties of the AC loca
ization are also proposed. Concluding remarks are given
Sec. IV.

II. THEORY AND MODELS

To begin with, we explain the one-to-one corresponde
of the 1D propagation between the AC and EM waves. F

FIG. 1. Band structures~solid lines! and transmission curves fo
the three models discussed in this paper:~a1! and ~a2! are for the
first model;~b1!, ~b2! are for the second model;~c1! and ~c2! are
for the third model. The broken lines in~a1!–~c1! represent the
inverse penetration depth Im(K).
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simplicity, while without destroying the generality, we r
strict our discussion to the monochromatic waves with ti
dependencee2 ivt. We also assume that waves are norma
incident on the left boundary of the media and propag
along thex axis. The 1D propagation of AC waves und
these assumptions is govened by

d

dx S 1

r

dp

dxD52
v2p

rc2
, ~1!

where r5r(x), p5p(x), and c5c(x) represent the mas
density, the pressure, and the phase velocity of the wav
the media, respectively. In the special case of layered m
considered in@17#, r andc are all constants in a single laye
Across an interface that separates two layers eitherr or c
jump to a different value but pressurep and media vibration
velocity

u5
1

ivr

dp

dx
~2!

must be continuously connected. The continuity conditio
for every interface together with the wave equation~1! itself
determine the dynamics of the whole system.

Similarly, the equation governing 1D propagation
monochromatic EM waves can be deduced from the M
well equation and is written as

FIG. 2. LE ~broken lines! and its variance~solid lines! for the
first ~a1!–~a5! and the second~b1!–~B2! model.
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d

dx S 1

m

dE

dxD52
v2eE

c0
2

52
v2E

mc2
~3!

or

d

dx S 1

e

dH

dx D52
v2mH

c0
2

52
v2H

ec2
, ~4!

whereE5Ey andH5Hz are the electric and magnetic field
e andm stand for the permittivity and permeability,c0 is the
speed of light in vacuum, andc5c0 /Aem is the speed of
light in the media. Comparing Eqs.~3! and ~4! with Eq. ~1!
one can easily recognize the equivalence between the
and EM models via the substitutions

E→p, H→2u, e→1/rc2, m→r ~5!

in Eq. ~3! or

H→p, E→u, e→r, m→1/rc2 ~6!

in Eq. ~4!.
In spite of these similarities, the two models discussed

@17# and @15# indeed have some different features. First,
the optical case described in Eq.~3!, one usually assume
m51. However, in our AC model the corresponding quant
is r. The mass density ratio between water and air is ab

FIG. 3. var(g) vs g for the first and the second models.
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FIG. 4. Lyapunov exponent~broken lines! and
its variance~solid lines! for the third model.
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775, a very large value. Second, the phase velocity rati
our model is 4.455, whereas in@15# the ratio is 1.0945.
Third, the thickness ratio in our model is 9999/1, much lar
than 1/1 that was considered in@15#. Fourth, we randomize
the thickness of the water layers~medium with high phase
velocity! and keep the thickness of air layers~medium with
low phase velocity! constant. In Ref.@15# they randomize the
thickness of the layers with low phase velocity.

To clarify where the major differences come from, w
define three models and study them numerically. The sys
for each model is a composite made of two kinds of mat
alsA andB with corresponding thicknessaj andbj in the j th
A/B layer. For simplicity hereafter we assumeaj5a, i.e., all
A type layers have the same size. Any quantitiesQ in A and
B type layers are denoted asQa andQb , respectively.

~1! Model 1 is an optical model witheb /ea52 and
mb /ma51. The thickness ratio iŝ b&/a51, where b
P^b&@12D,11D# andDP@0,1#.

~2! Model 2 is also an optical model witheb /ea520 and
mb /ma51. The thickness ratio iŝ b&/a51, where b
P^b&@12D,11D# andDP@0,1#.

~3! Model 3 is our previously considered acoustic mod
with cb /ca54.455 andrb /ra5755.2. The thickness ratio i
given by ^b&/a59999, wherebP^b&@12D,11D# and D
P@0,1#.

In a single layer the impedance of the AC waves is giv
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by rc and the impedance of EM waves is given byec or mc.
Thus we see that in model 3 the impedance contrast is a
3365 and impedance contrasts in models 1 and 2 are a
1.414 and 4.472, respectively.

III. NUMERICAL RESULTS

Before discussing the numerical results we first summ
rize the relevant results of our previous study@17#. There
both the LE and its variance as functions of frequency w
studied. At low disorders, the variance of the LE inside t
gaps is small. In contrast with the optical case@15#, there are
no double maxima inside the gap. With increasing disord
double peaks appear inside the allow bands. When excee
a certain critical value, however, the double peaks eme
The higher the frequency is, the lower is the critical valu
The increasing disorder reduces the band gap effect
smears the LE. We also plotted LE-variance relations. Ho
ever, with increasing disorder, we did not observe linear
pendence between the LE and its variance, as expected
the single-parameter scaling theory.

Now we turn to the discussion of the three chosen mod
When randomnessD50, the layered systems become pe
odic. Eigenfunctions of wave equation in a periodic enviro
ment are Bloch waves. As is well known, a band struct
appears in this situation. The understanding of the b
9-3
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FIG. 5. var(g) vs g for the third model.
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structure is very important and helpful in the following di
cussions. The dispersion relation of the Bloch waves in
underlying periodic system is given by

cosKd5coskaa coskbb2cosh 2h sinkaa sinkbb ~7!

with d5a1b representing the thickness of the space per
and K the Bloch wave number. Here for models 1 and
function cosh 2h is defined as

cosh 2h5
1

2 SAeb

ea
1Aea

eb
D ~8!

and for model 3 it is given by

cosh 2h5
1

2 S gh1
1

ghD , g5ra /rb , h5ca /cb . ~9!

In the frequency ranges whereKd are real, the waves ar
freely propagating in the media and by definition the f
quency ranges correspond to the pass bands. Beyond the
bandsKd are not purely real numbers, solutions of wa
equation that satisfy appropriate boundary conditions in b
the left and right infinity do not exist, and thus the frequen
ranges are referred to as the band gaps. If the media is s
06660
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infinite and the periodicity is ended by a boundary, say,
left boundary, then the waves are localized in the vicinity
the boundary. The penetration depth is equal to 1/uIm(K)u.
Figures 1~a1–c1! plot the band structures of models 1–
Solid curves represent Re(Kd) and cover the pass band
Broken lines cover the band gaps and represent the inv
penetration depths Im(Kd). Model 1 has very wide pas
bands and very narrow band gaps. Band gaps are wider
pass bands in model 2. Model 3 has very wide band gaps
very narrow pass bands. An important feature of model 3
that in the band gaps the penetration depth is very sm
Even in the first gap~which has the longest penetratio
depth! the penetration depth is smaller than one period.

To see how randomness influences the transmission p
erties we select the frequency range that is around the se
gap and plot the transmission curves on Figs. 1~a2–c2!. In
this calculation 1600 layers~800 periods! are used in mode
1 and 200 layers~100 periods! are used in models 2 and 3. I
the gaps, the transmission rate is almost zero. When rand
ness is increased we observe that the transmission ra
pass bands have been reduced greatly in model 2 and m
3. On the other hand, the band gaps in models 2 and 3 s
to be more robust than in model 1.

To further explore the influence of randomness we stu
both the LE and its variance. The results are shown in F
9-4
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FIG. 6. Transmission vs dimensionless fr
quency for the third model.~a! Transmission for
the N52 system~two air blocks!. ~b! Transmis-
sion for theN5100 system~100 air blocks!. ~c!
Comparison betweenTN52

50 ~broken line! and
TN5100 ~solid line!.
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2~a1–a5! are results of model 1 and Figs. 2~b1–b5! are re-
sults of model 2. The LE is denoted asg and its variance is
denoted as var(g). Hereg and var(g) are defined as

g5 lim
N→`

^gN& ~10!

with

gN5
1

2N
lnS 1

TN
D ~11!

and

var~g!5 lim
N→`

~^gN
2 &2^gN&2!, ~12!

whereTN is the transmission rate for a system with 2N lay-
ers (N periods in the corresponding periodic system!, and
notation^•••& represents the ensemble average. The sam
size is chosen in such a way that it is much larger than
localization length and the ensemble average is carried
over 200 random configurations. As expected, when the
domness is small the LE can be approximated by the inv
penetration depth for the wave propagating in the underly
semi-infinite periodic system. As in the case discussed
06660
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Ref. @15#, the double peaks of var(g) first appear near the
gap edges. The peaks of var(g) imply the fluctuations of
transmission. Further increasingD, the var(g) peaks become
fatter and flatter. We observe that if in the vicinity of a pe
there is another peak, then increasing the randomness
cause them to merge. For model 1, asD is increased, a pair
of var(g) peaks merge with each other inside the gap, f
lowing the scenario of Ref.@15#. However, for model 2 when
the randomness is increased the pairs of var(g) peaks tend to
merge with each other in pass bands and finally destroy
pass bands. It seems that in model 2 the merging of
double peaks of var(g) in a pass band will never be com
pleted. The merging tendency of a pair of double pea
merely increases the LE and destroys the pass band
belong to.

We also plot the LE versus its variance in Fig. 3. There
observe that although for model 1~with small dielectric con-
trast between two layers like that studied in@15#! the SPS
seems still a good approximation in large disorder limit, d
viation from SPS is clearly observed in model 2. Simil
quantities have also been calculated for model 3 and plo
in Figs. 4 and 5. There we also observe novel behaviors og
and var(g) and find even larger deviation from SPS as
ported in@17#.
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From these observations, we find:
~1! How does the var(g) variation with the randomnes

depend on many parameters. For example, the imped
contrast, the thickness ratio, and which kind of layers~for
example, high phase velocity, low phase velocity, etc.! is
randomized.

~2! When impedance contrast is large, it seems that
deviation from the SPS is a usual feature. The results
ported in @15# are based more or less on the fact that
impedance contrast between two layers is close to 1.

In order to understand why the large deviation from t
SPS in model 3 is established we study its transmission p
erties in more detail. In Fig. 6~a! we plot the transmission
rate of the AC waves through a pair of air blocks of thickne
a. The two air blocks are separated by a water layer of thi
nessb59999a. Similarly in Fig. 6~b! we plot the transmis-
sion for the system with 100 air blocks. Comparing these t
diagrams we find that the air blocks are very strong scatte
and thus as few as only two air blocks are enough to de
mine the ranges of band gaps and pass bands. If the lo
ization effect of AC waves in model 3 is mainly determin
by the multiple scattering of AC waves between pairs of
blocks, then one would expect that for a system with 100
blocks the transmissionTN5100 in the band gaps can be ap
proximated byTN52

50 . HereTN52 refers to the transmissio
en

.

s

B.
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rate for two air blocks illustrated in Fig. 6~a!. We indeed
observed this result in Fig. 6~c!. When randomness is no
very large, this local effect explains why the phase averag
process in model 3 is so inefficient that the randomness c
not modify the LE much in the band gaps.

IV. CONCLUDING REMARKS

In this paper we studied the statistics of localization pro
erties in one-dimensional layered systems. The Lyapunov
ponent and its variance are compared for three chosen m
els. We find that the band structures of the correspond
periodic systems influence the localization properties mor
the impedance contrast between neighboring layers is
close to 1. In general the single-parameter scaling is not v
accurate and more model-dependent parameters shoul
included in the detailed descriptions of localization beha
iors.
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